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Fine structure and complex exponents in power-law distributions from random maps
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Discrete scale invariance~DSI! has been suggested recently in time-to-failure rupture, earthquake processes,
financial crashes, the fractal geometry of growth processes, and random systems. The main signature of DSI is
the presence of log-periodic oscillations correcting the usual power laws, corresponding to complex exponents.
Log-periodic structures are important because they reveal the presence of preferred scaling ratios of the
underlying physical processes. Here we present evidence of log periodicity overlaying the leading power-law
behavior of probability density distributions of affine random maps with parametric noise. The log periodicity
is due to intermittent amplifying multiplicative events. We quantify precisely the progressive smoothing of the
log-periodic structures as the randomness increases and find a large robustness. Our results provide useful
markers for the search of log periodicity in numerical and experimental data.@S1063-651X~98!00901-5#

PACS number~s!: 02.50.2r, 05.40.1j, 47.53.1n
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I. INTRODUCTION

Complex critical exponents and complex fractal dime
sions until recently have been discussed only for hierarch
systems, be they man made@1–8# or naturally occurring as in
the mammalian bronchial tree@9,10#. These hierarchical sys
tems are characterized bydiscretescale invariance~DSI!, a
notion qualitatively similar to the concept of ‘‘lacunarity.’’ A
signature of this DSI is the presence of log-periodic osci
tions correcting the usual power laws, corresponding tocom-
plex exponents.

Recently, their occurrence in irreversible rupture@11–16#
and growth processes@17,18# as well as prior to financia
crashes@19,20# has been suggested. It has been propo
@21# that complex exponents are rather common and sho
be looked for generically in any model whose critical pro
erties are described by an underlying nonunitary field theo
This excludes the usual homogeneous spin systems in w
the renormalization flow is a gradient@22#. This includes
models with nonlocal properties such as percolation and
mals @21#, polymers and their generalizations, models of
reversible growth processes such as rupture@11–16#,
diffusion-limited aggregation~DLA ! @17,18#, and models
with quenched disorder such as spin glasses@23–27#. See
@28# for a review.

Three outstanding problems remain.
~i! Do we know all the physical mechanisms that c

produce complex critical exponents?
~ii ! How strong are the log-periodic structures and h

robust are they with respect to noise and disorder?
~iii ! Does there exist a smooth invariant probability dist

bution ~having a density! or is it discrete?
With respect to the first question, six situations have b

discussed:~a! the presence of a built-in geometrical hiera
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chy @1–8,10#, ~b! the diffusion in anisotropic quenched ran
dom lattices in which the hierarchy is constructed dynam
cally due to the probabilistic encounters with traps@29#, ~c!
intermittent amplification processes@30#, ~d! cascades of ul-
traviolet instabilities as in rupture and growth process
@17,18#, ~e! nonlocal geometry@21#, and~f! quenched disor-
dered systems@23–27#.

In regard to the second question, log-periodic oscillatio
of spin systems on a fractal amount to exceedingly sm
effects, typically of the order of 1025 in relative value@2,6#.
In contrast, it is still not fully understood why log-periodi
structures seem to be many times stronger, of the orde
10% or so, in rupture and growth processes. In addition,
periodicity implies a preferred scaling ratio that, in natu
should be largely perturbed by disorder. Theoretical e
mates of the effect of disorder on the log-periodic correctio
indicate that they should be generally robust@21#. An impor-
tant practical question is how much disorder or noise w
make the log-periodic corrections too small to be observ
Ensemble averaging is also an issue as finite-size eff
cause significant variations in the phase of the log-perio
oscillations. Averaging may cause them to disappear. T
was observed in DLA clusters@17# in which single cluster
analysis uncovered the log-periodic structures while aver
ing procedures destroyed them.

In order to address these questions on the effect of di
der, we study a simple, positive, random map with param
ric noise

Xt115atXt1bt with at ,bt.0. ~1!

The growth rateat and the additional termbt are assumed to
be pairs of positive identically distributed random valu
120 © 1998 The American Physical Society
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with the joint distribution functionPa,b . In most of the cases
treated below, we assume thatat and bt are independent
which yieldsPa,b5PaPb .

It may seem that the linear model~1! is so simple that it
does not require a careful mathematical investigation. Thi
not the case however, as the rather extensive mathema
analysis of the problem in@33# indicates. We will show a
very unusual behavior of solutions of the difference equat
~1!. It is known @33# that, provided some regularity assum
tions hold and the average rate of growth^ lnat& is negative,
the time seriesXt is stationary. Furthermore,Xt is character-
ized statistically by a probability distribution function with
power-law tail

PX~x!;x2~11m! ~2!

when the equation form,

^am&51, ~3!

has a positive solution@31–36#.
The power-law distribution function stems from an inte

mittent and transient amplification occurring when seve
successiveat are larger than 1. Its origin is thus in the cla
of intermittent amplifications@30# and intermittent trapping
@29# mechanisms. We may therefore expect complex-val
m exponents. This should lead to the occurrence of det
able log-periodic corrections in the leading simple pow
law behavior.

We are concerned here with the continuity or discreten
of this distribution function and with the strength and dete
tion of the potential log-periodic corrections, especially a
function of the distributionsPa and Pb . Intuitively, the
broader these distributions are, the weaker we expect
log-periodic corrections to be since a log periodicity is t
signature of a favored scaling ratio. This preference m
disappear as the disorder increases. We aim to care
quantify this scenario, for the benefit of future analysis of l
periodicity.

In Secs. II and III, we recall useful information, discuss
connection with products of random matrices and itera
function systems, and review the so-called transition ope
tor approach determining the probability density functi
~PDF! P(X). We then discuss the case in whichat take only
two values 1/a andaj with probability p and 12p, respec-
tively, wherea.1 andj.0, first in the case of a fixedb
51 and then with increasingly wideningPb distributions.
We then analyze the case in whichat is broadly distributed
and discuss the detection criteria for the log-periodic corr
tions.

In addition to the present focus as a paradigm for syste
exhibiting complex exponents, this random map~1! has been
introduced in various contexts, for instance, in the phys
modeling of one-dimensional disordered systems@31# and
the statistical representation of financial time series@32#. The
variableXt is known in probability theory as a Kesten var
able@33#. The map~1! describes, for instance, the time ev
lution of a fish populationXt with at depending on the rate o
reproduction and on the depletion rate due to fishing as w
as environmental conditions andbt describing the input due
to restocking from an external source, such as a fish ha
is
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ery, or from migration from adjoining reservoirs@36#. The
random map~1! can also be applied to other problems
population dynamics, epidemics, investment portfo
growth, and immigration across national borders@36#. Varia-
tions of this model have been proposed recently for
analysis of crop control in the presence of weed infest
@37#. Models of economic evolution typically involve a sys
tem of affine coupled equations of the type~10! below,
which are multidimensional generalizations of Eq.~1!. For
instance, the economic model of Keynes in its simplest fo
links consumption, investment, and production in a line
affine system of deterministic equations. The system~10!
corresponds to a generalization in which the coefficients
the autoregression are allowed to fluctuate in time to acco
for uncertainty. More generally, models used in econom
rics @38# are very similar to Eqs.~1! and ~10!, even if they
usually assume constant coefficients.

It is probably true that Eq.~1! is one of the simplestlinear
stochastic equations that can provide an alternative mode
strategy for describing complex time series. We note tha
nonlinear version with a quadratic nonlinearity~correspond-
ing to the logistic equation with random multiplicative nois!
has been shown recently to lead to a different type of crisi
that there is a sudden qualitative change in the chaotic
namical behavior induced by variations of the paramet
@39#. We do not discuss these properties, but restrict
considerations to the affine random map~1!.

II. RESULTS ON THE KESTEN AFFINE RANDOM MAP

A. Formal solution

The formal solution of Eq.~1! for N>1 reads

Xt1N5S )
l 50

N21

at1 l D Xt1 (
l 50

N21

bt1 l )
m5 l 11

N21

at1m , ~4!

where we define)m5N
N21 at1m[1 for the special valuel 5N

21. It is clear that the) l 50
N21at1 l multipliers of Eq.~4! con-

trol theXt dynamics. ThusXt1N diverges~remains bounded!
if the average logarithmic growth factor^ lnat& is positive
~negative!. Here we focus our attention on the case

^ lnat&,0. ~5!

In this regime, we notice the role ofbt , which provides a
reinjectionmechanism@34# allowing Xt to fluctuate without
converging to zero, as it would ifbt vanished.

B. Product of random matrices

The map~1! can be written as a product of random
32 matrices

S Xt11

1 D 5S at bt

0 1 D S Xt

1 D . ~6!

By Furstenberg’s theorem, the normuuVtuu(;Xt for largeXt)
of the tth vector

Vt[S Xt

1 D ~7!
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grows as@40#

uuVtuu5uuV0uuel1t, ~8!

wherel1 is the largest Lyapunov exponent of the product
the random matrices. The 232 matrices are triangular an
thus

l15max$^ lnat&,0%. ~9!

We recover the exponential growth regime ofXt for ^ lnat&
.0. In the reverse casêlnat&,0, the Lyapunov exponent i
zero, which corresponds to the marginal case between e
nential growth and exponential decay. This is the regi
where one usually encounters power-law behavior, for
stance, in power-law sensitivity to initial conditions in d
namical systems at the onset of chaos@42#.

It is worth noticing that this zero Lyapunov exponent
different from the directly measured Lyapunov exponent
Eq. ~1!. Indeed, the solution~4! shows that a perturbatio
dXt at time t gives an error dXt1N5dXt) l 51

N21at1 l

;e(N21)^ lna&. This corresponds to anegativeLyapunov ex-
ponent for the case studied here~5!, equal to ^ lna&. This
would lead one to conclude that the dynamics is trivial. G
erally speaking, the widespread opinion in the physical co
munity that notions such as chaos have some strict co
spondence to the positivity of Lyapunov exponents is
quite correct. See, for example, the detailed discusssio
nonchaotic dynamical systems with positive Lyapunov ex
nents and vice versa, and further references in@43,44#. Here
the usual calculation of the Lyapunov exponent is not se
tive to the ‘‘reinjection’’ mechanism introduced by thebt
term. By construction, the matrix formulation~6! takes this
effect into account. The resulting vanishing Lyapunov exp
nent alerts us to the possibility of complex behavior.

C. Iterated function system

We also mention the relationship with iterated functi
systems~IFSs!, which are defined as follows@45#. One first
defines an affine transformationW from RD to RD:

W@x#5Ax1b, ~10!

whereA is a D3D matrix andb a vector inRD. An affine
transformation is contractive if there exists a Lipschitz co
stants,1 such that

uW@x#2W@y#u,sux2yu. ~11!

An IFS consists ofN affine transformationsWi and a set of
probabilitiespi.0 with ( i 51

N pi51. Starting with a given se
of points, the IFS code consists in applying to it an infin
sequence of transformations, each of them being chosen
its corresponding probability. In general, IFS codes sat
the average contractive condition

s1
p1s2

p2
•••sN

pN,1. ~12!

Taking D51, we see that Eq.~10! is the same as Eq.~1!,
whereN is the number of different values taken byat ~sup-
pose for simplicity thatbt is constant! with their respective
probabilitiespi . In other words, the affine random map~1! is
f
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a one-dimensional IFS. Then the Lipschitz constantsi is
equal to thei th valueai thatat can take. Condition~12! then
becomes the familiar

(
i 51

N

pi lnai[^ lna&,0. ~13!

This retrieves the regime~5! discussed above. Usually, IFS
are studied in situations where all the affine transformati
have their Lipschitz constant individually negative, i.e.,
are contractive. The present work~whereD51) deals with a
rather special but very interesting situation where some
them are dilating, while on average the set of transformati
is contractive. This correspondence and the discovery
power-law distributions are found when some of the tra
formations of the IFS are dilating suggests to us an inve
gation of the behavior of similar intermittent dilating IFS
higher dimensions, where rotations are added to the tran
tion and dilation processes. This is left for future work. He
we will next use the correspondence with IFS to underst
intuitively the fractal structures found when theat take a
finite number of values.

D. Probability density function

Calling Pat
, Pbt

, andPXt11
the PDFs ofat , bt , and

Xt11, respectively~and assuming that they are integrab
functions!, then the PDF ofXt ~obtained by the standar
Markov argument! obeys the equation

PXt11
~X!5E

2`

`

Pat
~a!daE

2`

`

Pbt
~b!dbE

2`

`

PXt
~Y!

3d~X2aY2b!dY ~14!

or

PXt11
~X!5E

2`

` Pat
~a!

a
daE

2`

`

Pbt
~b!PXtS X2b

a Ddb.

~15!

The two PDFsPXt
andPXt11

approach a common stationar

PDF P(X) for large t @34,35#. We are interested in the de
scription of the tail ofP(X), i.e., for X@b. We can then
neglect theb term of PXt

„(X2b)/a… on the right-hand side
of Eq. ~15!. This allows us to simplify Eq.~15! into

P~X!5E
2`

` Pat
~a!

a
PS X

a Dda for large X, ~16!

using *2`
` Pbt

(bt)dbt51. Since Eq.~16! is linear in P(X),
the general solution can be written as a sum over a se
particular solutions@31#. These solutions are composed
power laws and faster decaying functions~exponential func-
tions!. The set of power-law solutions is obtained by assu
ing the formP(X);X2(11m) for X@1. This yields Eq.~3!
determining the exponentm.

The inequality~5! and Eq.~3! are the cornerstones of ou
analysis. We construct and analyze several examples w
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parameters are constrained by Eq.~5! and we study the so
lutions of Eq.~3! and compare them with direct numeric
simulations.

III. TRANSITION OPERATOR APPROACH

One of the obstacles in the implementation of the
proach in the preceding section is that we need to ass
that all the considered distributions have densities, whic
not the case with at least some of our examples. To stud
more general situation, let us consider the so-called trans
operator approach.

A. Transition operator approach and nonsmooth distributions

According to our definitions, Eq.~1! defines a Markov
chain. We can define the transition operatorP of this random
process as

Ph~x!5E hS x2b

a DdPa,b~a,b! ~17!

for any integrable functionh. This operator describes th
image of a distribution density under the action of our ra
dom process. If an invariant probability densityP exists it
should satisfy

PP5P. ~18!

The introduction of Eq.~17! is justified by the fact that this
integral operator allows for the study of nonsmooth and e
discontinuous distributions.

Consider a simple implementation of a random select
scheme. Assume that 0,a1,1,a2 , 0,b1, and 0,b2
for the two maps

x→a1x1b1 , ~19!

x→a2x1b2 ~20!

such that Eq.~19! is chosen with probabilityp, while Eq.
~20! is chosen with probability 12p. The corresponding
joint distributionPa,b for the random variablesat andbt is
singular. Furthermore, these two random variables hea
depend on each other. Therefore, Eq.~15! cannot be used
directly. However, it is trivial to specify the correspondin
transition operator

Ph~x!5
p

a1
hS x2b1

a1
D1

12p

a2
hS x2b2

a2
D . ~21!

Moreover, this description is easily generalized to the c
with an arbitrary ~albeit finite! number of linear maps
x→aix1bi , where each is selected with the probabilitypi
~provided( i pi51),

Ph~x!5(
i

pi

ai
hS x2bi

ai
D . ~22!

The representation~22! shows that our random system lac
a smooth ~and even bounded! invariant density for any
choice of the positive coefficientsai andbi . Assume on the
contrary that such a PDFh(x) exists. This has to satisfy
-
e

is
a
n

-

n

n

ly

e

Ph(x)5h(x) for any xP@0,1#. To proceed further, we nee
to estimate the variation of the image of theh function. The
variation of a function is, roughly speaking, an integral of t
modulus of the derivative of the function over its domain.
the case of monotonic functions, it can be shown that

var~Ph!5var~h!(
i

pi

ai
. ~23!

According to Eq.~12!, we note that

)
i

ai
pi,1, ~24!

which yields

(
i

pi

ai
.1. ~25!

Therefore, each time we apply the transition operator,
variation of the image of a function is multiplied by th
factor( i(pi /ai).1. Hence the limit distribution~if it exists!
cannot be a function of bounded variation.

A special case was treated in@31# with a finite system of
random maps producing a discrete invariant distribution:

x→1 with probability p, ~26!

x→ax11 with probability 12p. ~27!

In this case, it is easy to find the invariant distribution an
lytically. However, since the first map has a zero value of
multiplier a, the system does not satify our assumptions t
all coefficients should be positive.

B. Existence of the PDF for the case of the smooth
distribution of coefficients

In this subsection we study a more general case, where
have a random mapx→ax1b with random coefficientsa,b,
whose joint probability distribution isP(a,b). The case con-
sidered above corresponds to the discrete distribu
P(a,b). Our main aim here is to prove that if the distributio
P(a,b) has a densityp(a,b) with ‘‘good enough’’ proper-
ties, then the random map system also has a finite invar
density. Indeed, consider the corresponding transition op
tor

Ph~x!5E E p~a,b!

a
hS x2b

a Ddadb. ~28!

After the change of variablesj5x2b this operator become

Ph~x!52E E p~a,x2j!

a
hS j

aDdadj. ~29!

Assume now that

varb p~a,b!<C,` ~30!
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for any a.0, where varbp(a,b) stands for the variation o
the p(a,b) function with respect to the second variable. U
ing the above representation, we find that

var~Ph!<E E C

a
hS j

aDdadj5CE F E hS j

aDdS j

aD Gda

5CS E h~x!dxD E da. ~31!

Sinceh is assumed to be the density of a probability dis
bution, then*h(x)dx is finite. This shows that the variatio
of Ph is universally bounded from above. The existence
the invariant distribution@33# then proves the existence o
the PDF.

C. Markov-dependent choice of the subsequent map

Our earlier discussion of random map systems assu
that the choice of a subsequent mapx→aix1bi does not
depend on the immediately antecedent map chosen. This
relatively strong restriction and in this section we shall sh
that this assumption is not necessary. We will show that,
the stationary process, the representation of the trans
operator depends only on the stationary probabilities of
random choicespi and not on the transition probabilitie
between subsequent maps.

Assume that currently the mapx→aix1bi was chosen;
then the conditional probability to choose the mapx→ajx
1bj is equal topi j . The process of the random choice
governed by the finite state Markov chain with the transit
probabilities (pi j ). Assume that this Markov chain is ergod
and denote bypi its unique invariant distribution. Then ou
entire system is still a Markov chain, whose transition ope
tor is

Ph~x!5(
i

piF(
j

pi j

aj
hS x2bj

aj
D G

5(
j

1

aj
hS x2bj

aj
D(

i
pipi j 5(

j

pj

aj
hS x2bj

aj
D .

~32!

It depends only on the stationary probabilitiespi . As a re-
sult, we immediately see that all asymptotic properties a
depend only on the choice ofpi . The generalization of ou
argument for the general case where the joint distribution
the coefficientsa andb may have both discrete and contin
ous components is straightforward.

IV. TWO-POINT DISTRIBUTIONS

Let us return now to the question about the asymptotic~as
x→`) properties of the PDF for the case of only two line
maps. The above derivations show that these asymp
properties do not depend on the choice of the additio
termsbi ~as long as they are nonzero and well behaved!. Let

a.1, 0,p,1, j.0 ~33!

such thata151/a,1 and a25aj.1. Equation ~16! be-
comes
-

-

f

ed
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P~X!5paP~aX!1~12p!a2jP~a2jX!. ~34!

Condition ~5! imposes the requirement

j

11j
,p,1 ~35!

and Eq.~3! leads to

~12p!z11j2z1p50, ~36!

wherez[am andz is complex.

A. j integer

At first takej51; then from Eq.~35! we see thatp must
be within 1

2 ,p,1. The tworeal solutions of Eq.~36! are
z65(16AD)/2(12p), whereD5124p(12p)>0. From
the definitionz5am ~and ei2np51 for any integern!, we
obtain

m6,n[mR1 im I5
lnz6

lna
1 i

2pn

lna
. ~37!

The PDF ofXt is thus of the form

P~Xt!5(
6,n

C6,n

Xt
~11mR!cos~m I lnXt!. ~38!

The preferred scaling ratios are obtained by the factors oXt
reproducing the same values of the cosine, i.e.,a1/n, with n
an integer. The discrete scale invariance is simply the re
of the intermittent amplification by the fixed factora. The
log periodicity is thus trivially associated with the discre
multiplicative structure.

When j52, threereal z solutions exist forz for the al-
lowed range2

3 ,p,1. The imaginary part ofm thus stems
from the same technical reason as forj51 and reflects the
intermittent amplification by the factora2.

In general, ifj5N is a positive integer, Eq.~36! obeys

~12p!zN112z1p50 ⇔ ~z21!QN~z;p!50,
~39!

where

FIG. 1. Xt history for at with a two-point distribution ata
52, j52, p50.95, andbt51.
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QN~z;p![~12p!(
k51

N

zk2p. ~40!

The root structure ofQN(z;p)50 for Rez.0 is determined
with, e.g., Routh’s algorithm@41#. It can be shown that for
N,5 this polynomial has only one root with Rez.0 and
that Imz50 for this single root. However, forN>5 there
always exist roots such that Rez.0 and ImzÞ0.

To illustrate the integerj regime, Fig. 1 shows a segme
of theXt history for the casea52, j52, p50.95, and a
constantbt51. Most iterates are small, while rare interm
tent excursions explore very large values. The~numerically
obtained! cumulative distribution is shown in the log-log plo
of Fig. 2. A complex structure, reminiscent of a devil’s sta
case, overlays an average linear decay. The structure c
sponds to all possible values ofn in the imaginary part~37!
of the exponentm, where the largestn provide the smalles
details of the cumulative distribution. Figure 3 shows t
~numerically obtained! PDF, i.e., the derivative of Fig. 2. W
observe a self-similar structure, as expected from the co
spondence with the IFSs discussed in Sec. II C~IFSs in gen-

FIG. 3. The~numerically obtained! PDF forat with a two-point
distribution at a52, j52, p50.95, andbt51 (108 iterates,
104 equispaced bins per unit of logXt). Note that log means log10

throughout.

FIG. 2. Cumulative distribution of the 104 largest iterates among
108 realized for at with a two-point distribution ata52, p
50.95, andbt51.
re-

e-

eral encode stochastic fractal structures@45#!. We also ob-
serve that the distribution seems to be nowhere continu
as expected from the derivation in Sec. III A.

It is interesting to progressively coarse grain this se
similar structure by introducing a disorder onbt . This is
accomplished by chosingbt uniformly in the interval@b,1#.
The valueb51 recovers the ordered casebt51. Decreasing
b corresponds to increasing the disorder. Figure 4 shows
PDF P(Xt) for decreasing valuesb5 31

32 , 7
8 , 1

2 ,0 ~while keep-
ing a52, j52, andp50.95). The roots of Eq.~36! are
z051 and z65(216A77)/2, or mR050, m I0
5n(2p/ ln2), mR1'1.9588, m I 15m I0 , mR2'2.5890,
andm I 25(112n)(p/ ln2) for integern.

The ‘‘frequency’’ of a log-periodic oscillation is define
by

f ~n![
m I~n!

2p log
[

1

lnl
, ~41!

where we definel as the scaling ratio associated with the l
periodicity @13,21#. Here f (1)05 f (1)1'3.3219, f (0)2

'1.6609, andf (1)2'4.9828. These numbers are compar
with the spectrum analysis of the tail portion of the PDF. W
use the logarithmic derivative of theb50 PDF of Fig. 4 to
get a data with zero average slope~its average value is the
leading power-law exponent!. This is represented in Fig
5~a!. Its Lomb periodogram spectrum@46# is shown in Fig.
5~b! and yields four frequencies 0.6, 1.6, 3.3, and 5.0. T
smallest of these is attributed to the inverse of the~log! tail

FIG. 4. Scaled PDF ofXt given by Eq.~1! for at with a two-
point distribution ata52, j52, p50.95, andbt uniform with
~a! 13PDF andb5

31
32(108 iterates, 104 equispaced bins per unit o

logXt), ~b! 1033PDF andb5
7
8 @109 iterates, 103 equispaced bins

per unit of logXt , the same for~c! and ~d!#, ~c! 1063PDF andb
5

1
2, and~d! 1093PDF andb50.
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126 57PER JÖGI, DIDIER SORNETTE, AND MICHAEL BLANK
length used. The others are in good agreement with the
dictions f (0)2 , f (1)1 , f (1)2 in ascending order. The smal
partially hidden, bump at 2.1 and the more recognizable
at 4.3 are of unknown origin.

B. j noninteger

We have shown that for integerj>5 there will always
exist some roots of Eq.~36! with nonzero imaginary and
positive real parts. This type of root structure is common
nonintegerj. If j is irrational, then an infinite number o
distinct roots solve Eq.~36!. We select the slightly simple
casej52.5 ~with a52 andp50.95 as before!.

In Fig. 6~a! the PDF forbt51 is given for the 108 first
iterates of Eq.~1! with a binning density of 104 points per
decade. Figure 6~b! shows the PDF for a uniformly distrib
utedbt with b5 15

16 ~lower trace! and the scaled PDF~upper
trace, 1033PDF) forb50, i.e.,bt uniformly distributed be-
tween 0 and 1. These two PDFs use the first 109 iterates of
Eq. ~1! with a log-equidistant binning of 103 points per de-
cade.

As already pointed out in Sec. III B, a continuousbt dis-
tribution seems to lead to a continuous PDF forX. The
analysis above neglected the influence of a varyingbt . We
resort to a limit consideration on a sequence of progressi
thinned, uniform,bt distributions to match theory with th
present simulation results. We select the three caseb

50,3
4 , 7

8. For each of these tail regions of the PDF@Fig. 7~a!,

FIG. 5. ~a! Logarithmic derivative of a portion of the PDF ta
for the upper (b50) trace in Fig. 4.~b! Lomb periodogram of~a!.
e-

e

r

ly

8~a!, and 9~a!#, the logarithmic derivative is computed@Fig.
7~b!, 8~b!, and 9~b!#. This gives a local estimate of the lead
ing exponent of the power-law tail of the PDF. A consta
value would correspond to a pure power law. Oscillatio
that are approximately periodic in logX are the signatures o
the log periodicity. This is confirmed by a spectral analy
given in Figs. 7~c!, 8~c!, and 9~c! of the signals shown in
Figs. 7~b!, 8~b!, and 9~b!, respectively, using the Lomb pe
riodogram technique@46#. We clearly identify a number of
frequencies.

We compare these numerical results with a direct anal
cal determination of the roots of Eqs.~3! and~36!. The com-
plex m solutions are sought wherez5am5ex1 iy. These are
the roots of

R~x,y;j,p!1 iJ~x,y;j,p!50, ~42!

where

R~x,y;j,p![~12p!e~11j!xcos@~11j!y#2ex cosy1p,
~43!

FIG. 6. ~a! PDF for at with a two-point distribution ata
52, j52.5, p50.95, andbt51 (108 iterates, 104 equispaced
bins per unit of logXt). ~b! Scaled PDFs forat with a two-point
distribution ata52, j52.5, p50.95, b5

15
16 ~lower trace, 1

3PDF), andb50 ~upper trace, 1033PDF). Both are with 109

iterates and 103 equispaced bins per unit of logXt .
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J~x,y;j,p![~12p!e~11j!xsin@~11j!y#2ex sin y.
~44!

The zeros of Eqs.~43! and ~44! define nodal curves in the
x-y plane. The solutions (x,y) are the intersections of thes
nodal curves. Whenj is rationalj5M /N, whereM andN
are the smallest relative prime positive integers, we see
the set of solutions is periodic in they direction with a period
2pN. Eqs.~43! and ~44! are converted into

~12p!ejx5
siny

sin~11j!y
, ~45!

FIG. 7. ~a! PDF tail for at with a two-point distribution ata
52, j52.5, p50.95, andbt uniform with b50 (109 iterates,
103 equispaced bins per unit of logXt). ~b! Its logarithmic deriva-
tive. ~c! Lomb periodogram of~b!.
at

ex5p
sin~11j!y

sinjy
. ~46!

This shows that the values ofx are bounded from above by
finite number. An unboundedx would, from Eq.~46!, corre-
spond to a vanishing sinj y. This would imply that j y
5np for some integern and therefore that sin(11j)y
5(21)n sin y. Using Eq.~45! we would obtain (12p)ejx

51(n odd is not allowed!, leading to a contradiction. This
implies that there is a maximum value formR . Table I gives
the five solutions (xm ,ym), indexed bym51 –5. For a given

FIG. 8. PDF tail for at with a two-point distribution ata
52, j52.5, p50.95, andbt uniform with b5

3
4 (109 iterates,

103 equispaced bins per unit of logXt) ~a!. ~b! Its logarithmic de-
rivative. ~c! Lomb periodogram of~b!.
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m, we also extract the few first solutions obtained by 4p
periodic repetitions in they direction. These solutions ar
indexed by an additional integern corresponding to the orde
of the 4p period. We give these solutions in themR andm I
parameter space. The Appendix provides an approximate
quite accurate analytical determination of the solutions fou
in this table, based on a perturbative scheme.

The PDF ofXt is thus a sum of power laws overlayed b
log-periodic oscillations of the type

P~Xt!5
Cm,n

Xt
11mR~m!cos@m I~m,n!lnXt#. ~47!

FIG. 9. ~a! PDF tail for at with a two-point distribution ata
52, j52.5, p50.95, andbt uniform with b5

7
8 (109 iterates,

103 equispaced bins per unit of logXt). ~b! Its logarithmic deriva-
tive. ~c! Lomb periodogram of~b!.
ut
d

The leading power-law behavior is given by the firstm51
real solution, which has the smallestm5mR(1)'1.47 @with
m I(1,0)50#. The other solutions have largermR and thus
correspond to subleading corrections. We define the ‘‘ga
as the smallest difference between the real parts of the c
plex solutions to the first real solution. This gap measures
strength of the subleading log-periodic corrections to
leading power-law behavior. In the present situation,
mR(m) take two values'1.72 and'1.85, which are close to
mR(1). The gap isapproximately 0.25. This corresponds
strong corrections to the leading scaling for which the lo
periodic oscillations are very visible. Notice that, asympto
cally, the oscillations disappear forXt→`, as mR(m.1)
.mR(1). This effect is very weak in the present case sin
the relative amplitude of the dominant log-periodic oscil
tions decays asXt

20.25.
Table II gives the observed frequencies obtained by

spectral analysis of Figs. 7~c!, 8~c!, and 9~c! and compares
them with the predicted values. This contains the differ
cases with increased disorder on the variablebt . Here a
slight generalization of frequency is used:f (m,n)
[m I(m,n)/2p and F(M )[ f (M1125n,n5@M /5#). In-
creasing the disorder in the variablebt increases the noise
level and progressively washes out the higher frequencie

V. TWO-LEVEL ‘‘STAIRCASE’’ DISTRIBUTION

We now study a situation with a much larger disord
where the multiplicative factorsat are selected from a broad
continuous, distribution. To minimize the number of contr
parameters for the PDFs, we use distributions that are c
stant by parts. In Sec. VI we will examine the uniform di
tribution. Here we divide the interval@1/a,aj# into two sub-
intervals@1/a,1# and @1,aj# having different weightsp and
12p, respectively. The idea is to allow for a different weig
of the damping versus amplificating processes and exam
the consequence on the amplitude of the log-periodic st
tures. This choice corresponds to the following PDF forat :

Pat
~at!5

p

121/a
@Q~at21/a!2Q~at21!#

1
12p

aj21
@Q~at21!2Q~at2aj!#, ~48!

whereQ is the Heaviside function. The stationarity conditio
~5! that ^ lnat&,0 reads

TABLE I. All roots x,y, and the first fewm5mR1 im I roots
~here am5ex1 iy) of Eqs. ~43! and ~44! for at with a two-point
distribution ata52, j52.5, andp50.95.

m 1 2 3 4 5

x(m) 1.03 1.28 1.19 1.19 1.28
y(m) 0.0 2.56 4.91 7.66 10.06
mR(m) 1.47 1.85 1.72 1.72 1.85
m I(m,n50) 0.0 3.69 7.08 11.04 14.43
m I(m,n51) 18.13 21.82 25.21 29.18 32.57
m I(m,n52) 36.26 39.95 45.34 47.31 50.69
m I(m,n53) 54.39 58.08 61.47 65.43 68.82
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TABLE II. Predicted and observed frequencies@obtained by spectral analysis of Fig. 7~c!, 8~c!, and 9~c!#.
The increased disorder on the variablebt is noted with the differentb subscript. TheF(M ) labeled row
contains the predicted frequencies, whereas theb subscripted rows list the frequencies retrieved from
numerical realizations. Thebold type is used to indicate the frequency that gives the largest peak in
spectrum window, whereas the other well-defined peaks are given in standard type. The parentheses
values correspond to spectrum peaks that barely are above the noise level of the Lomb periodgram

M 1 2 3 4 5 6 7 8 9 10

F(M ) 1.35 2.60 4.05 5.29 6.64 8.00 9.24 10.69 11.93 13.2
Fb57/8(M ) 4.13 5.25 6.63 ~7.83! 9.13 11.96 13.25
Fb53/4(M ) ~1.33! ~2.53! 4.08 5.25 6.65 ~7.84! 9.12 10.77 11.92 13.30
Fb50(M ) 1.31 2.64 4.08 ~6.69!
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p̌~a,j!,p,1, ~49!

where

p̌~a,j![
aj~j lna21!11

aj~j lna21!111d~a,j!

with d~a,j!5
aj21

a21
~a112 lna!. ~50!

The integral equation~16! is now

P~X!5
ap

a21E1/a

1
PS X

at
D

at
dat1

12p

aj21E1

aj
PS X

at
D

at
dat .

~51!

This equation has a power-law solution for largeX if the
exponentm satisfies Eq.~3!, leading to

m115
ap

a21
~12a2~m11!!1

12p

aj21
~aj~m11!21!.

~52!

Assuming a complex solutionm5mR1 im I splits Eq. ~52!
into

FIG. 10. Portion of the complexm plane with rootsm5mR

1 im I of Eq. ~52! ~for at with a two-level staircase distribution a
a52, j52.5, andp50.95) as intersections between its real p
~solid lines! and imaginary part~dashed lines!.
mR115
ap

a21
@12a2~mR11!cos~m I lna!#

1
12p

aj21
@aj~mR11!cos~jm I lna!21#, ~53!

m I5
ap

a21
a2~mR11!sin~m I lna!

1
12p

aj21
aj~mR11!sin~jm I lna!. ~54!

To allow for a comparison with the previous case, we ke
the same parametersa52, j52.5, andp50.95 as before.
The solutions of these equations are graphically represe
as the intersections of the continuous and dashed lines in
10 @here p̌(2.0,2.5)'0.782 66#. Table III lists the smallest
roots and their corresponding log-periodic frequenc
@ f (m)[m I(m)/2p#.

An important difference with the previous two-point PD
is that now the gap value ismR(2)2mR(1).0.84, which is
about three times larger than before. This means that
log-periodic structures are smaller and decay faster for la
X. They are still quite visible as found in Fig. 11, where w
can observe the undulation ofP(X)’s tail. The results ob-
tained for the variousbt distributions ~from a nonrandom
bt51 to a uniformbt with b50) are essentially the sam
for X>3. The only difference is that a larger disorder inbt
allows for an exploration of the interval closer to 0.

The Lomb power spectrum analysis is presented in F
12. The fundamental frequency,f (2)'1.59, is visible in all
the simulations and more clearly in the spectral analy
where a strong peak appears in the Lomb power spectr
The next higher frequencyf (3)'3.0 is the only one that can
be detected as the disorder inbt increases. All higher fre-
quencies are lost in the noise. The reason for this is cl

t

TABLE III. First few m5mR1 im I roots of Eqs.~53! and ~54!
and predicted log-periodic frequencies forat with a two-level stair-
case distribution ata52, j52.5, andp50.95.

m 1 2 3 4 5 6

mR(m) 1.6535 2.4918 2.8418 3.0389 3.2015 3.317
m I(m) 0.0000 4.3475 8.0152 11.6794 15.3255 18.95
f (m) 0.0000 1.5932 2.9373 4.2801 5.6163 6.948
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The relative amplitude of a given frequencyf (m) is quanti-
fied by mR(m)2mR(1). For thesecond frequency we hav
mR(3)2mR(1)51.19. For the third frequency we hav
mR(4)2mR(1)51.39 and so on. It seems that a differen
mR(m)2mR(1) of the order or less than 1 is necessary
the clear detection of log periodicity. Intuitively, this ensur
that the amplitude of the oscillations does not decay m
than by a factor 100 over two decades. We notice tha
similar gap about 1 was found in the analysis of the lo
periodic structure of DLA clusters@17#. The present analysi
rationalizes why we have been able to detect these struc
in this case. Table IV makes the comparison between
predicted and observed frequencies.

We conclude that a log-periodic structure of the tail of t
Xt’s PDF is present for the smeared out two-level stairc
distribution, although its amplitude is weakened compared
the previous two-point distribution case. This was expec
from the theoretical analysis of the influence of disord
@21,17#. The important aspect of our result is that the l
periodicity and the preferred scaling ratiosl can no longer
be associated with a specifically chosen amplification fac
as they are for the previous two-point distribution. Notwit
standing the presence of a large disorder, a discrete s
effective scaling factors are selected. It is amazing to us h
strong this effect is and how relatively weak the influence
the disorder is.

VI. UNIFORM DISTRIBUTION

This section deals with the effects of a very strong dis
der on at . To attain this goal, we consider a uniformat
distribution

Pat
~at!5

Q~at2al !2Q~at2ar !

ar2al
, ~55!

where

0<al,1, ~56!

1,ar,âr~al !. ~57!

FIG. 11. PDF for the case where the PDF ofat has a two-level
staircase structure ata52, j52.5, and p50.95, with bt

51 (109 iterates, 103 equispaced bins per unit of logXt).
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-âr(al) is such that Eq.~5! is obeyed and is the solution of

âr~al !lnâr~al !2âr~al !5al lnal2al . ~58!

Figure 13 shows the allowedal-ar region.
The largest width compatible with Eq.~5! corresponds to

al50 and ar5e. When al is made larger, the maximum
value ofar progressively decays towards 1.

The integral equation~16! is

P~X!5
1

ar2al
E

al

ar
PS X

at
D

at
dat . ~59!

FIG. 12. ~a! Tail portion of the PDF in Fig. 11.~b! Logarithmic
derivative of~a!. ~c! Lomb periodogram of~b!.



-

to

he
s
. 1
th

-
m-
re
nd

as

aks
as

i-
odic
vis-

ent

in
or
tant

out
itu-
s.
d-
hat
rder
the
el
li-
ost
nd

ib-

4
2

s

. T
m
at

57 131FINE STRUCTURE AND COMPLEX EXPONENTS IN . . .
The tail of P(X) takes the form of a power law if the expo
nentm is the solution of

~m21!~ar2al !5ar
m112al

m11 . ~60!

With m5mR1 im I , we get

~mR11!~ar2al !5ar
mR11cos~m I lnar !2al

mR11cos~m I lnal !,
~61!

m I~ar2al !5ar
mR11sin~m I lnar !2al

mR11sin~m I lnal !.
~62!

We selectal50.001 andar51.9. The solutions with the
smallest, positive, real parts are given in the Table V,
gether with their corresponding log frequenciesf . The most
striking feature to note is the large gap valuemR(2)
2mR(1).2.67. These differences increase rapidly with t
order m of the solution. This implies that the oscillation
must be extremely weak and severely dampened. In Fig
we explore the dependence of the gap as a function of
parametersal andar of the model. Ifal50 andar52.71,
we find mR(2)2mR(1).2.1, but mR(1)50.006 is very
small. Whenal50 and ar52.0, we find mR(2)2mR(1)
52.545 withmR(1)51.0.

The situation does not improve if we takeal→12 and
ar→11 @while keeping the stationarity condition~5!#. Notice

TABLE IV. Predicted and observed frequencies forat with a
two-level staircase distribution ata52, j52.5, p50.95, and
two different choices forbt distribution. The first row contains the
predicted frequencies. Subsequent rows are the frequencie
trieved from the numerical simulations. Thebold emphasis indi-
cates the frequency that gives the largest peak in the spectrum
other well-defined peaks are written in normal format, while nu
bers inside parentheses correspond to peaks in the spectrum th
barely above the noise level of the Lomb periodgram.

m 1 2 3

f (m11) 1.59 2.94 4.28
f bt51(m) 1.51 3.07 ~4.31!
f b50(m) 1.51 3.00 ~4.50!

FIG. 13. Allowedal-ar domain forat with uniform distribution.
The dotted boundary depicts the strict inequalities given in Eq.~57!.
-

4
e

that we needar.1 in order to get a solution form, i.e., to
get a power-law PDF forXt . This stems from the fundamen
tal fact that the power-law PDF results from intermittent a
plifications. In summary, the log-periodic oscillations a
present theoretically, but are very difficult to measure a
quantify. The PDF for thebt51 case is shown in Fig. 15. A
segment of its tail is analyzed with the same procedure
was applied to the previous twoat-distribution families~Fig.
16!. Only f (4) seems to be recognizable among all the pe
in the Lomb periodogram, but this seems even far fetched
the signal is within the noise level. In conclusion, this un
form case corresponds to a large gap and the log-peri
structures, which are present in theory, are not clearly
ible.

VII. CONCLUDING REMARKS

We started our analysis by considering the intermitt
multiplicative processes of a simple binomialat distribution.
Not surprisingly, strong log-periodic corrections to the ma
power-law probability density function have been found f
the random affine map. The disorder in the additive cons
smooths out the higher frequencies, but does not dampen
the smallest log-periodic frequencies. We then analyzed s
ations with increasing disorder in the multiplicative term
Instead of going to the weak disorder regime with two broa
ened peaks, we analyzed a PDF of multiplicative factors t
consists of a two-step staircase. In this already large diso
regime, we have found that the log-periodic structure of
tail of the Xt’s PDF is present for the smeared out two-lev
staircase distribution, although it is weakened in its amp
tude compared to the two-point distribution case. The m
important aspect of our results is that the log periodicity a

FIG. 14. Gap valuemR(2)2mR(1) as a function ofar for dif-
ferent choices ofal .

TABLE V. First few m5mR1 im I roots of Eqs.~61! and ~62!
and the predicted log-periodic frequencies for the uniformly distr
utedat with al50.001 andar51.9.

m 1 2 3 4 5

mR(m) 1.2667 3.9414 4.8349 5.3984 5.8116
m I(m) 0.0000 11.6095 21.6147 31.5024 41.349
f (m) 0.0000 4.2545 7.9211 11.5446 15.153
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132 57PER JÖGI, DIDIER SORNETTE, AND MICHAEL BLANK
the preferred scaling ratiosl can no longer be associate
with a specifically chosen amplification factor, as they are
the two-point distribution. Notwithstanding the presence o
large disorder, a discrete set of effective scaling factors
selected. The ‘‘gap,’’ defined as the difference between
smallest exponent real part and the real solution, controls
strength of the log periodicity. We have been able to de
mine that the gap must be of the order or less than 1 in o
for the log periodicity to be strong. Larger gaps still lead
visible effects but the analysis must then be very precise
the noise level very low. This is the situation found for
uniform distribution of multiplicative factors. In summary
we have shown that log periodicity remains a significant
fect even in the presence of significant disorder.
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APPENDIX: DETERMINATION OF THE EXPONENTS
FOR THE TWO-POINT DISTRIBUTION USING

A PERTURBATIVE ANALYSIS

The power-law structure of theP(X) PDF characterizes
rare excursions ofXt to large values. These large values a
reached by repeated occurrence of the amplifying multi
cative factoraj. This motivates us to make the approxim
tion of neglecting the first ‘‘damping’’ term on the right
hand side of Eq.~34!,

P~X!'~12p!a2jP~a2jX!. ~A1!

This functional equation is simpler to handle. It also ha
form reminiscent of the renormalization-group equation t
Feigenbaum used in his analysis of a bifurcation sequenc
the logistic equation@47#. Analoguous equations have bee
discussed also in@11–13,21#. Assuming a power-law form
for P(X)@P(X)5A/X11m# provides for them equation

~12p!amj51. ~A2!

FIG. 15. PDF withat uniformly distributed betweenal50.001
and ar51.9, givenbt51 (109 iterates, 103 equispaced bins pe
unit of logXt).
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With the notationz5ex1 iy5amR1 im I, we obtain

x52
1

j
ln~12p!, mR52

ln~12p!

j lna
, ~A3!

y5
2kp

j
, m I5

2p

lnlk
, ~A4!

wherelk[aj/k andk is an integer. An approximation of th
imaginary part of the roots of Eq.~42! therefore is

y5
2kp

j
. ~A5!

This agrees fairly well with the exact computed roots sho
in Table I. We can improve on this estimation by inserti
the parametrization

y5
2kp

j
1e ~A6!

in the full set of equations~43! and ~44!. This yields the
following system of two equations of the two unknownsx
ande:

FIG. 16. ~a! Logarithmic derivative of a portion of the PDF
given in Fig. 15.~b! Lomb periodogram of~a!.
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@~12p!e~11j!xcose~11j!2excose#cos
2kp

j

2@~12p!e~11j!xsin e~11j!2exsin e#sin
2kp

j
1p50,

~A7!

@~12p!ejxcose~11j!2cose#sin
2kp

j
1@~12p!ejx

3sine~11j!2sin e#cos
2kp

j
50. ~A8!

TABLE VI. Appoximate @according to Eqs.~A11!, ~A12!, and
~A6!# and exact@from Eqs.~43! and ~44!# roots forat with a two-
point distribution ata52, j52.5, andp50.95.

k 0 1 2 3 4 5

xapprox(k) 1.0333 1.2760 1.1597 1.1597 1.2760 1.033
xexact(k) 1.0333 1.2808 1.1922 1.1922 1.2808 1.033
e(k) 0.0000 0.048020.1301 0.130120.0480 0.0000
yapprox(k) 0.0000 2.5612 4.8965 7.6699 10.0051 12.56
yexact(k) 0.0000 2.5605 4.9101 7.6563 10.0058 12.56
h.

A

S

et

s.

p.

J.

Re

w

s.
Assuminge(11j) to be ‘‘small,’’ we expand the trigono-
metric functions to first order ine:

@~12p!e~11j!x2ex#cos2kp/j2e@~12p!~11j!

3e~11j!x2ex#sin2kp/j1p50, ~A9!

@~12p!ejx21#sin2kp/j1e@~12p!~11j!

3ejx21#cos2kp/j50. ~A10!

Eliminating e between the two preceding equations, we g
an equation in the sole variablex:

~12p!e~11j!x2ex1p cos2kp/j50. ~A11!

There is a unique solution inx for eachk. Knowing x, we
then gete from

e52
~12p!ejx21

~12p!~11j!ejx21
tan

2kp

j
. ~A12!

Table VI compares these solutions with the exact ones, in
case whena52, j52.5, andp50.95.
ev.
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134 57PER JÖGI, DIDIER SORNETTE, AND MICHAEL BLANK
@38# W. H. Greene,Econometric Analysis, 2nd ed.~Prentice-Hall,
Englewood Cliffs, NJ, 1992!.

@39# H. L. Yang, Z. Q. Huang, and E. J. Ding, Phys. Rev. Lett.77,
4899 ~1996!.

@40# A. Crisanti, G. Paladin, and A. Vulpiani,Products of Random
Matrices in Statistical Physics~Springer-Verlag, Berlin, 1993!.

@41# F. R. Gantmacher,The Theory of Matrices~Chelsea, New
York, 1959!.

@42# U. M. S. Costa, M. L. Lyra, A. R. Plastino, and C. Tsalli
Phys. Rev. E56, 245 ~1997!.

@43# M. Blank, Discreteness and Continuity in Problems of Chao
Dynamics~American Mathematical Society, Providence, R
1997!.
@44# L. Biferale, M. Blank, and U. Frisch, J. Stat. Phys.75, 781
~1994!.

@45# M. F. Barnsley,The Science of Fractal Images, edited by
H.-O. Peitgen and D. Saupe~Springer-Verlag, New York,
1988!.

@46# W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B.
Flannery,Numerical Recipes in FORTRAN: The Art of Scie
tific Computing ~Cambridge University Press, Cambridg
1992!.

@47# M. J. Feigenbaum, J. Stat. Phys.19, 25 ~1978!; 21, 669~1979!;
P. Coullet and C. Tresser, J. Phys.~Paris! Colloq. 39, C5-25
~1978!; C. R. Acad. Sci.287, 577 ~1978!; P. Collet and J. P.
Eckmann,Iterated Maps on the Interval as Dynamical Syste
~Birkhauser, Boston, 1980!.


